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Abstract—Most of the “Big Data” applications, such as 
decision support and emergency response, must provide 
users with fresh, low latency results, especially for 
aggregation results on key performance metrics. 
However, disk-oriented approaches to online storage are
becoming increasingly problematic. They do not scale 
grace-fully to meet the needs of large-scale Web 
applications, and improvements in disk capacity have 
far out-stripped improvements in access latency and 
bandwidth. To this end, the paper proposes a memory-
based continuous query index to implement scalable and 
efficient aggregation query. 
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I. INTRODUCTION

Big Data’s time is coming, the three defining 
characteristics are volume, variety, and velocity. In this 
context, most of the “Big Data” applications must provide 
users with fresh, low latency results. However, data access 
latency makes the traditional hardware systems and software 
architectures are difficult to meet these requirements. 

TABLE I. THE DEVELOPMENT OF DISK ACCESS 
PERFORMANCE 

the mid of 
1980s

2013 improvement of 
performance

Disk capacity 30MB 500GB 16,667x

Maximum 
transmission rate

2MB/sec 100MB/sec 50x

delay 20ms 10ms 2x

capacity/bandwidth 
(big block)

15s 5,000s 333x

capacity/bandwidth 
(1KB block)

600s 58days 8,333x

Jim Gray rule(1KB
block)

5min 30hours 360x

In the past forty years, even though the capacity of disk 
was improved quickly, the improved transmission rate is still 
not very ideal. As seen from Table 1, the transmission rate is 

improved 50 times, but the access delay only is improved 2 
times. If it is measured by capacity/bandwidth (Jim Gray 
rule[1]), the results seem worse. As a typical representative 
of low-latency and high throughput, the memory access 
could speed up the data access exponentially, and is an
excellent solution to achieve efficient stream processing and 
query, such as Storm[2], S4[3], RAMCloud[4]. However, all 
of them consider little on the query index to improve the 
performance. To this end, this paper proposes a memory-
based continuous query index for stream processing in our 
stream processing system MRAQ, which can implement 
scalable and efficient aggregation query on data stream. 

II. THE OVERVIEW OF ACHITECTURE

In MRAQ, the fundamental storage unit is a segment, and 
each table is divided into a collection of segments. MRAQ 
partitions table into well-defined time intervals, typically an 
hour or a day, and may further partition according to values 
from other columns to achieve the desired segment size. In 
MRAQ, there are persistence segment and memory segment, 
the former is stored permanently in Hadoop Distributed File 
System(HDFS). All persistence segments have their 
metadata to describe their attributes such as the size, the 
compression format and the storage location. The persistence 
segment can be updated through the creation of a new 
persistence segment that obsoletes the older one. The 
segment covered very recent intervals is memory segment. 
The memory segment is incrementally updated after new 
data are injected, and can support immediately query during 
incremental indexing process. The memory segment can
periodically be converted into persistence segment. The 
incremental indexing only works by calculating the 
aggregate value of the interesting metric. This often brings 
an order of magnitude compression without sacrificing the 
numerical accuracy. Of course, this is at the cost of not 
supporting queries over the non-aggregated metrics. The 
query involves the following types of nodes as shown in 
Figure 1. The memory query node is responsible for data 
injection, storage, and response to queries for the memory 
segments. Similarly, the persistence query node is 
responsible for loading and responses to queries for 
persistence segments. A query will firstly be sent to the 
master node, which is responsible for finding and routing the 
query to the query nodes containing related data, the query 
nodes execute their portion of the query in parallel and return 
the results to the master node, then the master node receives 
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the results and mergers them, and finally returns the final 
result to the users. In addition, MRAQ also has a 
management node to manage the segment assignment,
distribution and replication. The management node depends 
on the external MySQL database and the Apache Zookeeper 
to achieve coordination. The memory query node is highly 
scalable. If the injection rate exceeds the maximum capacity, 
additional memory query nodes will be added. All of them 
simultaneously consume the data from the same data stream,
and each memory query node is only responsible for a part of 
the data source. 

Zookeeper

Master Node

Persistence Query Node

HDFS

Memory Query Node

Management Node

Data Stream

MySQL
Query

Figure 1. An overview of the MRAQ architecture 

III. MEMORY-BASED INDEX

MRAQ adopts column-oriented storage format, which 
could make the CPU more efficient as a result of only 
needed data are loaded and scanned. MRAQ supports 
different column types, according to these types, MRAQ 
reduce the cost of storing a column on memory and disk by
using different compression methods. We use dictionary 
encoding for String column. The dictionary encoding is a 
common method to compress data, for example, we map 
each publisher column into a unique integer identifier. 

Publisher Clicks Revenue
sina.com 25 15.70
sina.com 42 29.18

yahoo.com 17 17.31
yahoo.com 170 34.01

sina.com -> 0 
yahoo.com -> 1 

The mapping transforms the publisher column as an 
integer array, and the array indices represent the rows of the 
raw data set. For the publisher column, we can transform 
publishers as follows: [0, 0, 1, 1]. The integer array of this 
result is very suitable for compression. The generic 
compression algorithms based on encoding are very common 
in column-oriented storage. Similar methods can be applied 
to the numeric columns. For example, the following two 
numeric columns can be transformed into two arrays. 

Clicks -> [25, 42, 17, 170] 
Revenue -> [15.70, 29.18, 17.31, 34.01] 

In this case, we compress the original value instead of the 
encoded dictionary representations. In addition, MRAQ 
create additional indices for the string column to support any 
filters set. These indices are compressed and MRAQ 
operates their compressed form. Filters can be represented by 

the Boolean expression of multiple indices. Boolean 
operations on compressed indices can improve performance 
and save space. Consider the publisher column. For each 
unique publisher, we can get some information which row of 
the table the publisher is seen. We store the information in a 
binary array, which represents the row by the array indices.
If the publisher is seen in a certain row, the array indices will
be marked as 1, for example: 

sina.com -> rows [0, 1] -> [1][1][0][0] 
yahoo.com -> rows [2, 3] -> [0][0][1][1] 

The sina.com appears at 0 and 1 column. The mapping of 
column values to the row indices forms an inverted index. In 
order to know which rows contain sina.com or yahoo.com, 
we join the two arrays with OR. 

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1] 

IV. EXPERIMENT

We created a large test cluster with 80GB data including 
millions of rows. This data set includes more than a dozen 
dimensions, and the cardinalities ranges from double digits 
to tens of millions. We calculate three aggregation metrics 
for each row (count, sum, average) through 6 queries.
Testing benchmark cluster contains 6 nodes, and each node 
has 16 cores, 16GB of RAM, 10GigEFA Ethernet and 1TB 
of disk space. Overall, the cluster contains 96 cores, 96GB of 
RAM, as well as enough fast Ethernet and enough disk space. 

 Figure 2 shows the cluster scanning rate and Figure 3 
shows the core scanning rate. In Figure 2, we find the results 
of the expected linear scaling based on the result of the 5
cores cluster. In particular, we inspect the performance of the 
marginal revenue decreases with the scale of the cluster 
increasing, while in Figure 3 the core scanning rate of the 
query remains almost stable.

  
Figure 2. cluster scanning rate Figure 3. core scanning rate
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