
*Author for correspondence

A Memory-based Continuous Query Index for Stream Processing

Cuiwen Xiong Peng Zhang*

Institute of Information Engineering, Chinese Academy
of Sciences Beijing, China

University of Chinese Academy of Sciences Beijing,
China

Email:pengzhang@iie.ac.cn

Yan Li Shipeng Zhang Qingyun Liu Jianlong Tan
National Engineering Laboratory for Information

Security Technologies Beijing, China
National Computer network Emergency Response

technical Team Beijing, China
Email: liuqingyun@iie.ac.cn tanjianlong@iie.ac.cn

Abstract—Most of the “Big Data” applications, such as
decision support and emergency response, must provide
users with fresh, low latency results, especially for
aggregation results on key performance metrics.
However, disk-oriented approaches to online storage are
becoming increasingly problematic. They do not scale
grace-fully to meet the needs of large-scale Web
applications, and improvements in disk capacity have
far out-stripped improvements in access latency and
bandwidth. To this end, the paper proposes a memory-
based continuous query index to implement scalable and
efficient aggregation query.

Keywords-memory-based query; data stream;query index

I. INTRODUCTION

Big Data’s time is coming, the three defining
characteristics are volume, variety, and velocity. In this
context, most of the “Big Data” applications must provide
users with fresh, low latency results. However, data access
latency makes the traditional hardware systems and software
architectures are difficult to meet these requirements.

TABLE I. THE DEVELOPMENT OF DISK ACCESS
PERFORMANCE

the mid of
1980s

2013 improvement of
performance

Disk capacity 30MB 500GB 16,667x

Maximum
transmission rate

2MB/sec 100MB/sec 50x

delay 20ms 10ms 2x

capacity/bandwidth
(big block)

15s 5,000s 333x

capacity/bandwidth
(1KB block)

600s 58days 8,333x

Jim Gray rule(1KB
block)

5min 30hours 360x

In the past forty years, even though the capacity of disk
was improved quickly, the improved transmission rate is still
not very ideal. As seen from Table 1, the transmission rate is

improved 50 times, but the access delay only is improved 2
times. If it is measured by capacity/bandwidth (Jim Gray
rule[1]), the results seem worse. As a typical representative
of low-latency and high throughput, the memory access
could speed up the data access exponentially, and is an
excellent solution to achieve efficient stream processing and
query, such as Storm[2], S4[3], RAMCloud[4]. However, all
of them consider little on the query index to improve the
performance. To this end, this paper proposes a memory-
based continuous query index for stream processing in our
stream processing system MRAQ, which can implement
scalable and efficient aggregation query on data stream.

II. THE OVERVIEW OF ACHITECTURE

In MRAQ, the fundamental storage unit is a segment, and
each table is divided into a collection of segments. MRAQ
partitions table into well-defined time intervals, typically an
hour or a day, and may further partition according to values
from other columns to achieve the desired segment size. In
MRAQ, there are persistence segment and memory segment,
the former is stored permanently in Hadoop Distributed File
System(HDFS). All persistence segments have their
metadata to describe their attributes such as the size, the
compression format and the storage location. The persistence
segment can be updated through the creation of a new
persistence segment that obsoletes the older one. The
segment covered very recent intervals is memory segment.
The memory segment is incrementally updated after new
data are injected, and can support immediately query during
incremental indexing process. The memory segment can
periodically be converted into persistence segment. The
incremental indexing only works by calculating the
aggregate value of the interesting metric. This often brings
an order of magnitude compression without sacrificing the
numerical accuracy. Of course, this is at the cost of not
supporting queries over the non-aggregated metrics. The
query involves the following types of nodes as shown in
Figure 1. The memory query node is responsible for data
injection, storage, and response to queries for the memory
segments. Similarly, the persistence query node is
responsible for loading and responses to queries for
persistence segments. A query will firstly be sent to the
master node, which is responsible for finding and routing the
query to the query nodes containing related data, the query
nodes execute their portion of the query in parallel and return
the results to the master node, then the master node receives

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.114

781

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.114

768

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.114

768

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.114

768

the results and mergers them, and finally returns the final
result to the users. In addition, MRAQ also has a
management node to manage the segment assignment,
distribution and replication. The management node depends
on the external MySQL database and the Apache Zookeeper
to achieve coordination. The memory query node is highly
scalable. If the injection rate exceeds the maximum capacity,
additional memory query nodes will be added. All of them
simultaneously consume the data from the same data stream,
and each memory query node is only responsible for a part of
the data source.

Zookeeper

Master Node

Persistence Query Node

HDFS

Memory Query Node

Management Node

Data Stream

MySQL
Query

Figure 1. An overview of the MRAQ architecture

III. MEMORY-BASED INDEX

MRAQ adopts column-oriented storage format, which
could make the CPU more efficient as a result of only
needed data are loaded and scanned. MRAQ supports
different column types, according to these types, MRAQ
reduce the cost of storing a column on memory and disk by
using different compression methods. We use dictionary
encoding for String column. The dictionary encoding is a
common method to compress data, for example, we map
each publisher column into a unique integer identifier.

Publisher Clicks Revenue
sina.com 25 15.70
sina.com 42 29.18

yahoo.com 17 17.31
yahoo.com 170 34.01

sina.com -> 0
yahoo.com -> 1

The mapping transforms the publisher column as an
integer array, and the array indices represent the rows of the
raw data set. For the publisher column, we can transform
publishers as follows: [0, 0, 1, 1]. The integer array of this
result is very suitable for compression. The generic
compression algorithms based on encoding are very common
in column-oriented storage. Similar methods can be applied
to the numeric columns. For example, the following two
numeric columns can be transformed into two arrays.

Clicks -> [25, 42, 17, 170]
Revenue -> [15.70, 29.18, 17.31, 34.01]

In this case, we compress the original value instead of the
encoded dictionary representations. In addition, MRAQ
create additional indices for the string column to support any
filters set. These indices are compressed and MRAQ
operates their compressed form. Filters can be represented by

the Boolean expression of multiple indices. Boolean
operations on compressed indices can improve performance
and save space. Consider the publisher column. For each
unique publisher, we can get some information which row of
the table the publisher is seen. We store the information in a
binary array, which represents the row by the array indices.
If the publisher is seen in a certain row, the array indices will
be marked as 1, for example:

sina.com -> rows [0, 1] -> [1][1][0][0]
yahoo.com -> rows [2, 3] -> [0][0][1][1]

The sina.com appears at 0 and 1 column. The mapping of
column values to the row indices forms an inverted index. In
order to know which rows contain sina.com or yahoo.com,
we join the two arrays with OR.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

IV. EXPERIMENT

We created a large test cluster with 80GB data including
millions of rows. This data set includes more than a dozen
dimensions, and the cardinalities ranges from double digits
to tens of millions. We calculate three aggregation metrics
for each row (count, sum, average) through 6 queries.
Testing benchmark cluster contains 6 nodes, and each node
has 16 cores, 16GB of RAM, 10GigEFA Ethernet and 1TB
of disk space. Overall, the cluster contains 96 cores, 96GB of
RAM, as well as enough fast Ethernet and enough disk space.

 Figure 2 shows the cluster scanning rate and Figure 3
shows the core scanning rate. In Figure 2, we find the results
of the expected linear scaling based on the result of the 5
cores cluster. In particular, we inspect the performance of the
marginal revenue decreases with the scale of the cluster
increasing, while in Figure 3 the core scanning rate of the
query remains almost stable.

Figure 2. cluster scanning rate Figure 3. core scanning rate

ACKNOWLEDGEMENTS

The research work is supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences
under Grant No.XDA06030602; the China Postdoctoral
Science Foundation under Grant No. 2013M541076.

REFERENCES

[1] J. Gray, G Graefe. 1997. The five-minute rule ten years later, and
other computer storage rules of thumb, ACM Sigmod Record,
26(4):63-68.

[2] Storm Project[EB/OL]. http://storm-project.net/.
[3] Yahoo S4[EB/OL].http://incubator.apache.org/s4.
[4] J. Ousterhout, P. Agrawal, D. Erickson, et al.. 2010. The case for

RAMClouds: scalable high-performance storage entirely in DRAM,
ACM SIGOPS Operating Systems Review, 43(4):92-105.

782769769769

